首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   11篇
  2023年   3篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2017年   3篇
  2016年   5篇
  2015年   8篇
  2014年   6篇
  2013年   13篇
  2012年   5篇
  2011年   9篇
  2010年   5篇
  2009年   6篇
  2008年   8篇
  2007年   7篇
  2006年   3篇
  2005年   6篇
  2004年   6篇
  2003年   3篇
  2002年   6篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1998年   5篇
  1997年   8篇
  1996年   4篇
  1995年   3篇
  1992年   5篇
  1990年   2篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1961年   1篇
  1959年   2篇
  1955年   1篇
  1954年   2篇
  1953年   1篇
  1949年   2篇
  1948年   1篇
  1934年   2篇
排序方式: 共有177条查询结果,搜索用时 484 毫秒
101.
The CD28-specific mAb TGN1412 rapidly caused a life-threatening "cytokine storm" in all six healthy volunteers in the Phase I clinical trial of this superagonist, signaling a failure of preclinical safety testing. We report novel in vitro procedures in which TGN1412, immobilized in various ways, is presented to human white blood cells in a manner that stimulates the striking release of cytokines and profound lymphocyte proliferation that occurred in vivo in humans. The novel procedures would have predicted the toxicity of this superagonist and are now being applied to emerging immunotherapeutics and to other therapeutics that have the potential to act upon the immune system. Data from these novel procedures, along with data from in vitro and in vivo studies in nonhuman primates, suggest that the dose of TGN1412 given to human volunteers was close to the maximum immunostimulatory dose and that TGN1412 is not a superagonist in nonhuman primates.  相似文献   
102.
Apoptosis is a key mechanism for metazoans to eliminate unwanted cells. Resistance to apoptosis is a hallmark of many cancer cells and a major roadblock to traditional chemotherapy. Recent evidence indicates that inhibition of caspase-dependent apoptosis sensitizes many cancer cells to a form of non-apoptotic cell death termed necroptosis. This has led to widespread interest in exploring necroptosis as an alternative strategy for anti-cancer therapy. Here we show that in human colon cancer tissues, the expression of the essential necroptosis adaptors receptor interacting protein kinase (RIPK)1 and RIPK3 is significantly decreased compared with adjacent normal colon tissues. The expression of RIPK1 and RIPK3 was suppressed by hypoxia, but not by epigenetic DNA modification. To explore the role of necroptosis in chemotherapy-induced cell death, we used inhibitors of RIPK1 or RIPK3 kinase activity, and modulated their expression in colon cancer cell lines using short hairpin RNAs. We found that RIPK1 and RIPK3 were largely dispensable for classical chemotherapy-induced cell death. Caspase inhibitor and/or second mitochondria-derived activator of caspase mimetic, which sensitize cells to RIPK1- and RIPK3-dependent necroptosis downstream of tumor necrosis factor receptor-like death receptors, also did not alter the response of cancer cells to chemotherapeutic agents. In contrast to the RIPKs, we found that cathepsins are partially responsible for doxorubicin or etoposide-induced cell death. Taken together, these results indicate that traditional chemotherapeutic agents are not efficient inducers of necroptosis and that more potent pathway-specific drugs are required to fully harness the power of necroptosis in anti-cancer therapy.Cell death by apoptosis is a natural barrier to cancer development, as it limits uncontrolled proliferation driven by oncogenes.1 Chemotherapeutic agents that target apoptosis have been successful in anti-cancer therapy. However, cancer cells, especially cancer stem cells, often evolve multiple mechanisms to circumvent growth suppression by apoptosis.2 This resistance to apoptosis is a major challenge for many chemotherapeutic agents. Targeting other non-apoptotic cell death pathways is an attractive therapeutic alternative.A growing number of recent studies show that there are distinct genetic programmed cell death modes other than apoptosis.3 Necroptosis is mediated by receptor interacting protein kinase 3 (RIPK3).4 In the presence of caspase inhibition and cellular inhibitor of apoptosis proteins (cIAPs) depletion, tumor necrosis factor (TNF) receptor 1 triggers a signaling reaction that culminates in binding of RIPK3 with its upstream activator RIPK1 through the RIP homotypic interaction motif (RHIM).4 RIPK1 and RIPK3 phosphorylation stabilizes this complex and promotes its conversion to an amyloid-like filamentous structure termed the necrosome.5 Once activated, RIPK3 recruits its substrate mixed lineage kinase domain-like (MLKL).6 Phosphorylated MLKL forms oligomers that translocate to intracellular membranes and the plasma membrane, which eventually leads to membrane rupture.7, 8, 9, 10In addition to phosphorylation, RIPK1 and RIPK3 are also tightly regulated by ubiquitination, a process mediated by the E3 ligases cIAP1, cIAP2, and the linear ubiquitin chain assembly complex.11 The ubiquitin chains on RIPK1 act as a scaffold to activate nuclear factor-κB (NF-κB) and mitogen-activated protein kinase pathways and inhibit formation of the necrosome. As such, depletion of cIAP1/2 by second mitochondria-derived activator of caspase (Smac) mimetics or removal of the ubiquitin chains by the de-ubiquitinating enzyme cylindromatosis (CYLD) promotes necroptosis.12, 13, 14, 15 In addition, RIPK1 and RIPK3 are cleaved and inactivated by caspase 8.16, 17, 18 Mice deficient for caspase 8 or FADD, an essential adaptor protein of caspase 8, suffer from embryonic lethality due to extensive RIPK1- or RIPK3-dependent necroptosis.19, 20, 21 Hence, caspase inhibition and IAP depletion are key priming signals for necroptosis.The physiological functions of RIPK1 and RIPK3 have been extensively investigated in infectious and sterile inflammatory diseases.4, 22 By contrast, their roles in cancer cells'' response to chemotherapeutics are poorly understood. Here we show that RIPK1 and RIPK3 expression is significantly decreased in human colon cancer tissues, suggesting that suppression of RIPK1 or RIPK3 expression is advantageous for cancer growth. However, the loss of RIPK1 and RIPK3 expression in colon cancer was not due to epigenetic DNA modification. Interestingly, RIPK1 and RIPK3 expression in colon cancer cells is reduced by hypoxia, a hallmark of solid tumor. We found that chemotherapeutic agents did not effectively elicit RIPK1/RIPK3-dependent necroptosis in colon cancer cells. Moreover, caspase inhibition and Smac mimetics, which are potent sensitizers for necroptosis, also did not enhance chemotherapeutic agent-induced cell death. These results show that traditional chemotherapeutic agents are not strong inducers of classical necroptosis in colon cancers and suggest that development of pathway-specific drugs is needed to harness the power of necroptosis in anti-cancer therapy.  相似文献   
103.
Multikinase inhibitors are potent anticancer drugs that simultaneously intervene in multiple related signaling cascades, thus being capable of blocking salvage pathways that may play a role in the development of drug resistance. Multikinase inhibitors are increasingly evaluated for indications other than cancer, but long-term safety risks dictated by off-organ toxicities of these agents may prevent their safe and effective use. Here, we describe a new approach in which platinum coordination chemistry is applied for the development of a cell-selective multikinase inhibitor bioconjugate. The platinum(II) kinase inhibitor bioconjugate was designed to be active with the linker attached to the inhibitor and displayed improved activity by enhanced cell specificity as well as enhanced intracellular retention, thereby prolonging its pharmacological activity. In addition, the utilized platinum-based linkage technology potentiated the inhibitory activity of the multikinase inhibitor. These features in combination with carrier-mediated uptake in the target cells may revolutionize dosing regimens and safety profiles of (multi)kinase inhibitors.  相似文献   
104.
Perfluorochemicals (PFC's) are widely spread in the environment and have been detected in blood of wildlife and humans world-wide. Recently, various toxic effects of PFC's in laboratory rats have been demonstrated, resulting in increased government concerns regarding the presence of PFC's in the environment and the implications they have on human health. In the last decade, various analytical methods have been developed for the analysis of PFC's in different matrices whereby the majority of methods have utilised liquid chromatography coupled with mass spectrometry (LC-MS). Here we describe an optimized method for the quantitation of PFC's, including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), in food packaging, polytetrafluoroethylene (PTFE) sealant tape and drinking water. The method involved PFC's extraction via off-line SPE followed by separation using reversed-phase liquid chromatography on a Phenyl-Hexyl column coupled with ion-trap (IT) mass spectrometric detection. The optimized approach minimized ion-suppression effects commonly seen with conventional elution buffers, improving detection limits down to 25 pg/mL and allowed effective quantitation down to 50 pg/mL for PFOA and PFOS. The optimized LC-MS method detected PFOA and other PFC's in microwave popcorn packaging and PFOA in PTFE sealant tape in the low μg/kg. In all samples, PFOS was not detected.  相似文献   
105.

Background

Laribacter hongkongensis is associated with community-acquired gastroenteritis and traveler's diarrhea. In this study, we performed an in-depth annotation of the genes in its genome related to the various steps in the infective process, drug resistance and mobile genetic elements.

Results

For acid and bile resistance, L. hongkongensis possessed a urease gene cassette, two arc gene clusters and bile salt efflux systems. For intestinal colonization, it possessed a putative adhesin of the autotransporter family homologous to those of diffusely adherent Escherichia coli (E. coli) and enterotoxigenic E. coli. To evade from host defense, it possessed superoxide dismutase and catalases. For lipopolysaccharide biosynthesis, it possessed the same set of genes that encode enzymes for synthesizing lipid A, two Kdo units and heptose units as E. coli, but different genes for its symmetrical acylation pattern, and nine genes for polysaccharide side chains biosynthesis. It contained a number of CDSs that encode putative cell surface acting (RTX toxin and hemolysins) and intracellular cytotoxins (patatin-like proteins) and enzymes for invasion (outer membrane phospholipase A). It contained a broad variety of antibiotic resistance-related genes, including genes related to β-lactam (n = 10) and multidrug efflux (n = 54). It also contained eight prophages, 17 other phage-related CDSs and 26 CDSs for transposases.

Conclusions

The L. hongkongensis genome possessed genes for acid and bile resistance, intestinal mucosa colonization, evasion of host defense and cytotoxicity and invasion. A broad variety of antibiotic resistance or multidrug resistance genes, a high number of prophages, other phage-related CDSs and CDSs for transposases, were also identified.  相似文献   
106.
The inhibitory effects of exogenous melatonin (MEL) on colon oncogenesis were investigated using an azoxymethane (AOM)/dextran sodium sulfate (DSS) rat model. Male F344 rats initiated with a single intraperitoneal injection of AOM (20 mg/kg bw) were promoted by 1% (w/v) DSS in drinking water for 7 days. They were then given 0.4, 2 or 10 ppm MEL in drinking water for 17 weeks. At week 20, the development of colonic adenocarcinoma was significantly inhibited by the administration with MEL dose-dependently. MEL exposure modulated the mitotic and apoptotic indices in the colonic adenocarcinomas that developed and lowered the immunohistochemical expression of nuclear factor kappa B, tumor necrosis factor α, interleukin-1β and STAT3 in the epithelial malignancies. These results may indicate the beneficial effects of MEL on colitis-related colon carcinogenesis and a potential application for inhibiting colorectal cancer development in the inflamed colon.  相似文献   
107.
These preclinical studies aimed to 1) increase our understanding the dietary induction of nonalcoholic steatohepatitis (NASH), and, 2) further explore the utility and mechanisms of glucagon-like peptide-1 receptor (GLP-1R) agonism in NASH. We compared the effects of a high trans-fat (HTF) or high lard fat (HLF) diet on key facets of nonalcoholic fatty liver disease (NAFLD)/NASH in Lep(ob)/Lep(ob) and C57BL6J (B6) mice. Although HLF-fed mice experienced overall greater gains in weight and adiposity, the addition of trans-fat better mirrored pathophysiological features of NASH (e.g., hepatomegaly, hepatic lipid, and fibrosis). Administration of AC3174, an exenatide analog, and GLP-1R agonist to Lep(ob)/Lep(ob) and B6 ameliorated hepatic endpoints in both dietary models. Next, we assessed whether AC3174-mediated improvements in diet-induced NASH were solely due to weight loss in HTF-fed mice. AC3174-treatment significantly reduced body weight (8.3%), liver mass (14.2%), liver lipid (12.9%), plasma alanine aminotransferase, and triglycerides, whereas a calorie-restricted, weight-matched group demonstrated only modest nonsignificant reductions in liver mass (9%) and liver lipid (5.1%) relative to controls. Treatment of GLP-1R-deficient (GLP-1RKO) mice with AC3174 had no effect on body weight, adiposity, liver or plasma indices pointing to the GLP-1R-dependence of AC3174's effects. Interestingly, the role of endogenous GLP-1Rs in NASH merits further exploration as the GLP-1RKO model was protected from the deleterious hepatic effects of HTF. Our pharmacological data further support the clinical evaluation of the utility of GLP-1R agonists for treatment of NASH.  相似文献   
108.
The platinum(IV) complexes: [PtCl(4)(en)], cis,trans-[PtCl(2)(OAc)(2)(en)], cis,trans-[PtCl(2)(OH)(2)(en)] and trans-[Pt(OH)(2)(ethmal)(en)], encompassing a range of reduction potentials and their platinum(II) analogue [PtCl(2)(en)], have been assayed for their protein binding ability in the presence of albumin, albumin and L-cysteine and RPMI 1640 tissue culture medium supplemented with foetal calf serum (RPMI/FCS). cis,trans-[PtCl(4)(en)] exhibited significant protein binding in all three experiments, in a similar fashion to the platinum(II) complex, presumably as a consequence of its rapid reduction. The remaining three platinum(IV) complexes displayed little if any protein binding, with the greatest amount of binding observed in the RPMI/FCS experiment. The extent of binding in the RPMI/FCS correlated with the reduction potentials of the complexes, with the most readily reduced species binding to the greatest extent.  相似文献   
109.
The Dictyostelium gene ampA, initially identified by the D11 cDNA, encodes a novel anti-adhesive-like protein. The ampA gene product inhibits premature cell agglutination during growth and modulates cell-cell and cell-substrate adhesion during development. Analysis of the promoter indicates that cap site-proximal sequence directs ampA expression during both growth and early development. Expression following tip formation is controlled by more distal sequence, which contains TTGA repeats known to regulate prestalk cell gene expression in other promoters. Comparison of reporter gene expression and endogenous mRNA accumulation indicates that during growth the ampA gene is expressed in an increasing number of cells as a function of density. The number of cells expressing the ampA gene drops as development initiates, but the cells that continue to express the gene do so at high levels. These cells are initially scattered throughout the entire aggregate. By the tip formation stage, however, the majority of ampA-expressing cells are localized to the mound periphery, with only a few cells remaining scattered in the upper portion of the mound. In the final culminant, ampA is expressed only in the upper cup, lower cup, and basal disc. Although reporter expression is observed in cells that migrate anteriorly to a banded region just posterior to the tip, expression is rarely observed in the extreme tip. AmpA protein however, is localized to the tip as well as to ALCs during late development. The results presented here suggest that ampA gene expression is shut off in ALCs that continue along the prestalk differentiation pathway before they are added to the primordial stalk.  相似文献   
110.
The distribution of mitochondria in pancreatic acinar cells was investigated using confocal fluorescence microscopy and transmission electron microscopy (EM). Acinar cells were studied either after enzymatic isolation or in small segments of undisassociated pancreatic tissue. Loading of isolated acinar cells with Mito Tracker Green or Red, a fluorescence mitochondrial probe, showed that mitochondria are predominantly situated in the perigranular, subplasmalemmal and perinuclear regions. Subsequent applications of EM fixatives induced a leak of the fluorescent indicator to the cytosol but did not change the distribution of mitochondria. EM was then performed on isolated acinar cells and on acinar cells of pancreatic tissue segments. The intracellular distribution of mitochondria was quantified by calculating the percentage of the cross-sectional area that was occupied by mitochondria. In isolated acinar cells the highest density of mitochondria was seen in the perigranular region, where mitochondria occupied 25.69±1.58% of the area, then the subplasmalemmal region with 12.61±0.77% and the perinuclear region with 9.07±0.97% (n=26). Similar results were obtained from acinar cells of pancreatic tissue segments: the perigranular 22.9±1.95%, subplasmalemmal 12.45±0.78% and perinuclear regions 9.07±0.97% (n=26). The outer mitochondrial membranes were frequently positioned close to membranes of the ER, which followed the outer contour of mitochondria. Mitochondria were never found in direct contact with the nuclear envelope: there were usually layers of ER between the mitochondrial and nuclear membranes. Subplasmalemmal mitochondria were found in a very close proximity to the plasma membrane with no ER layers between the mitochondrial and the corresponding plasma membranes. We conclude that in pancreatic acinar cells mitochondria are preferentially distributed to perigranular, subplasmalemmal and perinuclear regions and this distribution is not affected by isolation or fixation procedures.P.R. Johnson and N.J. Dolman contributed equally to the study. This work was supported by a Medical Research Council programme grant. P.R.J. is a Medical Research Council PhD student and N.J.D. is a Wellcome Trust PhD student.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号